
 
 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 

2020 Paper No. 20450 Page 1 of 11 

Creating Geo-specific Synthetic Environments using Deep learning and 

Process Automation 

 
Bodhiswatta Chatterjee, Hermann Brassard, Bhakti Patel 

Presagis Inc. Canada 

Montreal, Canada 

Bodhiswatta.Chatterjee@presagis.com, Hermann.Brassard@presagis.com, Bhakti.Patel@presagis.com 

 

 
ABSTRACT 

 

Creation of geo-specific 3D environments for training and simulation requires a lot of information along with Electro-

Optical (EO) imagery. Acquiring vectors of different object classes along with attributes for each vector is a labor-

intensive process. Another important component for making the 3D environment geo-specific is the depth information 

obtained from Digital Surface Models (DSM), information which is often expensive, difficult to acquire, and might 

be noisy. This paper discusses how Deep Learning (DL) based techniques can be used for the extraction of attributed 

vectors of different object classes from EO imagery and eventually create geo-specific 3D synthetic environments 

without DSM data. 

The contribution of this work is twofold: first, multi-level Deep Learning techniques are used for the extraction of 

building footprints and attributes (e.g., roof type) for each extracted building. Using extracted and derived features 

(area, shape, etc.), the building heights are estimated which alleviates the requirement of acquiring expensive and 

difficult to procure DSM data. Second, the challenge of creating the huge training datasets required to train Deep 

Learning models is addressed by generating synthetic data using our in-house software to solve the problem of roof 

type classification where no labeled training dataset exists. A performance-based comparative analysis of 

classification techniques on synthetic data with other state-of-the-art techniques like few-shot classification is done to 

provide insights on how synthetic/hybrid datasets can be used when labeled training datasets are not available. 

Finally, a qualitative comparison of 3D reconstructions is performed where the models are created using our automated 

3D reconstruction pipeline. The reconstructions will allow the comparison of the results obtained from human 

produced footprint with those produced through Artificial Intelligence (AI). The result will show reconstructions based 

on AI-inferred attributes is very close to geo-specific standards and offers the avenue to remove the labor-intensive 

manual attribution or acquisition of expensive DSM data.  
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INTRODUCTION  

 

Creation of synthetic environments for training requires a large amount of Geographic Information System (GIS) data 

in the form of vectors such as building footprints, road networks, vegetation scatter, hydrography, etc. Publicly-

available GIS information (e.g. Open Street Maps [OSM]) often contains insufficient amount of information and is 

not correlated with the Electro Optical (EO) or Infrared (IR) imagery of the area. Manually-labeled data of much better 

quality can be acquired, albeit at a higher cost. 

 

Current advances in computer vision tasks allow object detection and semantic segmentation with relatively high 

accuracy using deep neural networks. These are ideal for the purpose of extraction of features like (building, roads, 

trees, water, etc.) from remote sensor imagery. A simple conversion of the extracted features into vectors will suffice 

to feed in a 3D synthetic environments reconstruction.  

 

The extracted features can be used directly to create a geo-typical synthetic environment. However, creating geo-

specific synthetic environments requires a large amount of information in the form of attributes for each extracted 

vector (e.g. building roof type, building height, road type, number of lanes on road, etc.). Those additional attributes 

can be acquired by combining manual labeling processes and a Digital Surface Model (DSM) of the area. Both of 

these are expensive and access to high resolution DSM to support building height assessment is often challenging. 

 

Recently, there has been increasing interest in the extraction of geospatial features such as building footprints, road 

center lines, etc. from remote sensor imagery. There a few interesting and high quality datasets [INRIA (Maggiori et 

al, 2017), AIRS (Chen et al, 2018), SPACENET (Van et al, 2018), etc.] openly available for the purpose of training 

of deep neural networks for building segmentation, building footprint extraction or road network extraction. However, 

most of these datasets do not have attributes for important labels in support of 3D reconstruction such as roof type or 

building height. Since current deep learning techniques rely heavily on huge, labeled, datasets for training the 

networks, this presents a road block for the use of AI techniques to extract attributes-rich features from satellite 

imagery. 

 

The contribution of this paper is twofold. First, we show how a pipeline of multiple neural-network-based techniques 

can be used to extract features efficiently from remote sensor imagery and attribute them in a multi-step process. We 

work with a cross-section of the entire problem (i.e. the building feature class which is considered as the most 

important feature for creation of urban synthetic environments). We use state-of-the-art deep neural network ICT-Net 

(Chatterjee et al, 2019) for extraction of building footprints as the first step of the pipeline. 

 

Second, we address the most common problem for computer vision tasks: creation of huge labeled training datasets 

required to train deep neural network models. We tackle this problem by using two different approaches. The first 

approach relies on a state-of-the-art few-shot classification technique (Siamese networks) while the other, a much 

easier and more intuitive approach, relies on the generation of synthetic data to create a huge ML training and testing 

labeled dataset using our process automation software (Velocity). Velocity is an automated pipeline that allows large 

scale processing of GIS data and creation of procedural components to produce 3D terrain. For this paper we work 

with the most important building attribute after the footprint in support of 3D reconstruction: the roof types. This 

approach can still be extended to multiple attributes for any feature type. We also provide a performance-based 

comparative analysis of the two approaches. 
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The second stage of our pipeline (i.e. extraction of attributed feature vectors) helps us advance one step closer to 

creating geo-specific synthetic environments. In the end, we use existing automation processes to reconstruct the 3D 

environment using the produced attributed vectors. We create two synthetic environments, the first being geo-typical 

using manually labeled building footprints and the second being close to geo-specific using attributed building 

footprints extracted by the AI pipeline. We do a qualitative comparison of the two resulting environments. 

 

 

 

METHODOLOGY 

 

We use a multi-stage pipeline to extract features along with attributes from remote sensor imagery and create a geo-

specific environment using process automation. The first stage of the pipeline takes in orthorectified RGB imagery as 

input and produces a binary (building/non-building) classification map. Next, it is further processed to extract the 

building boundaries as building footprints from the classification map. The next stage of the pipeline branches into 

two different approaches for extraction of the attribute roof type for each extracted building footprint. In the last stage 

of the pipeline we use process automation software to create a 3D synthetic environment by extruding the attributed 

building footprints. Figure 1 summarizes the AI pipeline for extraction of attributed building footprints. 

 

 

Building Footprint Extraction 

 

The first stage of the pipeline is tasked with one of the most challenging tasks of computer vision: Semantic 

Segmentation i.e. per pixel classification of an image into different classes, in this case building/non-building classes. 

To successfully complete this task we use one of our recently developed technique ICT-Net (Chatterjee et al, 2019) a 

state-of-the-art deep neural network for semantic segmentation of buildings from satellite/aerial imagery. This 

technique has been demonstrated on two publicly available datasets for building segmentation (INRIA and AIRS). 

ICT-Net is an encoder-decoder style fully convolutional neural network with 103 convolutional layers. It uses feature- 

recalibrated dense blocks of symmetric but varying sizes in both the encoder and decoder parts of the architecture. 

The network was trained on the INRIA image labeling dataset (Maggiori et al, 2017) which consists of aerial imagery 

from 10 different cities in North America and Europe.  

 

The output of the network is a pixel level mask of the same size as the input image with building pixels marked with 

1 (white) and rest of the pixels are marked 0 (black). The next step towards extraction of the building footprints from 

the mask is to apply a well thought-out set of post processing steps to achieve refined, smooth and high quality building 

boundaries in the form of vectors. The post-processing includes a selection of one or more of the following techniques 

Figure 1. The diagram summarizes a pipeline for the work presented in this paper. The multi stage 

pipeline focuses on extraction of Features (i.e. Building footprints) and investigate the use of two 

different approaches (few-shot classification and synthetic data) for extraction of feature attributes 

such as roof type.  
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(i) bounding box replacement, (ii) square simplification or (iii) Douglas-Peucker algorithm for polygon simplification, 

based on a threshold value. 

 

 

Roof Type Classification 

 

The next stage of the pipeline is designed to extract properties (attributes) of the previously extracted building 

footprints. To demonstrate our technique in this paper we work with the most visually significant attributes (i.e. roof 

type) to create geo-specific synthetic environments but the same approach can be extended to other attributes. Current 

known supervised machine learning techniques work very well only if a large training dataset is available. To the best 

of our knowledge there were no existing datasets available for building a roof type classification system using 

supervised machine learning. Unavailability of labeled training data is a very common problem and current computer 

vision research community proposes two alternatives in such cases (i) Use a synthetic dataset for training of a deep 

convolutional neural network (CNN) or (ii) Use a few-shot classification technique. In this paper we do a quantitative 

comparison of both approaches to our roof type classification problem. 

 

Synthetic Dataset Generation 

 

Synthetic datasets are very commonly used for solving generic computer vision problems such as urban scene 

classification or autonomous driving when large labeled datasets are not available [e.g. Synthia (Ros et al, 2016), 

SunCG (Song et al, 2017), etc.]. In contrast, computer vision on remote sensing data is just starting to catch up with 

the use of synthetic data for training of machine learning models [e.g. (Krump et al, 2019)]. In order to generate the 

synthetic data used in our training, we have leveraged the existing 3D generation pipeline from Presagis along with 

3D rendering capability. Using the software suite, over 1 million images were generated, allowing for a wide range of 

variety in terms of ground imagery, rooftops and rooftop shapes. 

 

For this dataset we used satellite imagery with 30 cm Ground Sampling Density (GSD). First we extracted the geo-

specific footprints of the buildings which match the exact size and shape of the buildings found in the imagery. Next 

we extruded a 3D building with a predetermined set of templates to generate a permutation of rooftops, each with 

different materials, colors and types of roof. After generating the buildings with different rooftops, we used a 3D 

rendering software (Vega Prime) to visualize the building on top of the satellite imagery.  

Figure 2. Shows results of building footprint extraction using ICT-Net on Hawaii imagery. (a) Color 

imagery. (b) Single channel prediction mask of same size as input imagery obtained as output of the 

network. (c) Confidence of network prediction shown as heat map. Red to Blue signifies high to low 

confidence for the building class. (d) Extracted and refined building footprints shown as green polygons 

on top of the imagery. 
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Finally, we placed the observer in Nadir view and calculated the field of view to match the resolution of the imagery. 

Using an automated process we took a snapshot of the rooftop with different variations and this process helped us 

produce different permutations of roof types using the same building. We also varied the sun position and illumination 

at different times of day to obtain variation in color and shadow of the building. Produced snapshots were saved and 

automatically labelled with the type, color and material of the roof type using the name of the saved file. 

 

Few-shot classification 

 

Solving computer vision tasks like image classification and object detection using minimal amount of labeled data has 

recently been an active area of research. There are many proposed techniques (Metric learning, Bayesian methods, 

Meta learning, etc.) which try to solve the same problem from different perspectives. To date, the current accuracies 

of these techniques are not comparable to supervised learning techniques. The only exception is the use of Siamese 

networks (Taigman et al, 2014) – a metric learning based approach which is currently the state-of-the-art for Face 

detection systems and results in very high level of accuracy. It is also used in the domain of optical character 

recognition (Koch et al, 2018).  To the best of our knowledge this is the first time Siamese networks are being 

introduced in the context of image classification in remote sensing domain.  

 

The principle behind Siamese networks is a CNN-based architecture which learns a distance metric between two 

embedding of two input images passed through the same network (with same weights). The comparison of the two 

images in the latent space produces a distance score that is used to estimate the class membership of each image. The 

training of such networks requires the design of a special loss function call contrastive (triplet) loss. 

 

Synthetic Environment Generation 

 

To generate the synthetic database, we use the Velocity framework. Velocity is an automated pipeline that allows us 

to process GIS data on a large scale and create procedural databases. Velocity is composed of what we call “operators” 

– which are sub-processes that, when combined, create an automated workflow. The combination of these operators 

result in a “recipe”.  

 

We use the recipe to manipulate, attribute and process the GIS source data (which can consist of vectors, imagery and 

raster data). An attribution such as height is inferred using algorithms that are based on the area of the footprint. If no 

additional information is given in the pipeline, the roof type and color are randomly attributed to the buildings from a 

library of building templates, resulting in a variety of 3D models in the database. However, with the attribution from 

the AI pipeline (roof type and roof color), it will be processed in the recipe by assigning specific building templates 

to the footprint according to the information given; this process constructs accurate models for the AOI (area of 

interest). Within the AI pipeline the roof color is extracted as the average color value of the area predicted as a single 

building, and returned as an attribute for each building. The color of the roof type is selected within the recipe using 

this attribute and this provides a better representation of the real world environment once Velocity takes the processed 

data and starts publishing the new content database (i.e. the 3D scene). 

Figure 3. The diagram summarizes a workflow for generation of synthetic roof type dataset.  
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EXPERIMENTS AND RESULTS 

 

To validate the proposed use of synthetic data for training of neural networks, we devised two sets of experiments. 

The first set comprised of three state-of-the-art image classification techniques trained on the generated synthetic roof 

dataset. For the second set, we trained a Siamese neural network, very similar to what was proposed in (Koch et al, 

2018) on a small subset of a synthetically-labeled roof type training dataset. 

 

Data Preparation for Training 

 

The synthetically generated dataset consists of 1.1 million images built on top of 200 selected footprints with a crop 

of size 256x256 pixels. The dataset was subdivided into 3 parts training, validation and test sets with approximate 

proportions of 80%, 10% and 10% respectively without any overlaps. All images of 160 randomly selected footprints 

were used as the training dataset and the rest of the images are split equally to form validation and test datasets. For 

all 3 supervised classification techniques we used the complete training dataset along with a number of standard data 

augmentation techniques [rotation (up to 10 degrees), flip (horizontal/vertical), adaptive contrast and brightness 

alterations, etc.]. For the purpose of training of the Siamese network we took a subset of the training dataset 1760 

images (i.e. 160 x 11 images) equally distributed in terms of roof types (i.e. 11 roof types for each footprint). For the 

purpose of reporting, the validation and test set remained consistent for all 4 network evaluation techniques. 

 

Training Process for Supervised Classification Networks 

 

The selected image classification networks have demonstrated very good results on ImageNet (Deng et al, 2009), one 

of the most recognized dataset in computer vision research for image classification. The first of the selected networks 

is a specific version of residual networks (He et al, 2016) ResNet50 which consists of 50 convolutional layers 

organized into 5 residual blocks. Next we used a densely connected convolutional neural network DenseNet121 

(Huang et al, 2017) which contained 121 convolutional layers organized into 4 dense blocks with a growth rate (k) of 

32. Although this network has many more convolutional layers, the number of trainable parameters is only 7 million 

as compared to 23 million for ResNet50 due to the efficient design of dense blocks in DenseNet. A lower number of 

trainable parameters in a deep neural network helps the network to learn the most important features and, in-turn, to 

generalize to perform well on the test dataset. The last selected network is called MobileNet (Howard et al, 2017), a 

unique neural network architecture designed using two special concepts of depthwise convolution and pointwise 

convolution built into 1 block. This network is made up of 5 such blocks, consisting of only 2.2 million trainable 

parameters in total and was able to get state-of-the-art on the ImageNet dataset.  

 

For training of all the neural networks we used a common set of hyper parameters. The input to the network was 

256x256 pixels in size with 3 channel and the numerical values normalized between 0 and 1. All networks used cross-

entropy loss with Adam optimizer with an initial learning rate of 0.01. All the networks used a learning rate decay 

with a factor of 0.5 when the validation loss plateaus for 3 epochs and an early stopping when the validation loss does 

not decrease for 10 epochs. We used a standard set of data augmentation techniques to further increase the size of 

dataset and to reduce overfitting of network parameters. 

 

Training Process for Siamese Network 

 

The term Siamese refers to twins. This category of architectures contain two streams of convolutional neural networks 

running in parallel; they are not different networks but are two copies of the same network sharing the same 

parameters, hence the name Siamese Networks. The two input images (x1 and x2) are passed through the convolutional 

layers to generate a fixed length feature vector for each (h(x1) and h(x2)). After the neural network model is trained 

properly, we can make the following hypothesis: If the two input images belong to the same character, then their 

feature vectors must also be similar, while if the two input images belong to the different characters, then their feature 

vectors will also be different. Thus the element-wise absolute difference between the two feature vectors must be very 

different in both cases above. The similarity score generated by the output sigmoid layer must also be different in 

these two cases. 
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The model consists of two streams of 13 convolution layers organized similarly to the convolutional layers in VGG16 

(Simonyan et al, 2014) followed by two global average pooling layers. These two streams merge into an absolute 

difference layer which is used to replace the contrastive loss at the end. It is followed by a fully connected sigmoid 

layer. The network uses binary cross-entropy loss and Adam optimizer with an initial learning rate of 0.0001.   The 

input to the network is a pair of 256x256 color images with their numerical values normalized between 0 and 1. One 

of the images acts as the anchor and the other is either of the same or different class (roof type) chosen at random. 

This network also uses a learning rate decay with a factor of 0.5 when the validation loss plateaus for 3 epochs and an 

early stopping when the validation loss does not decrease for 10 epochs. At the time of training we selected a subset 

of only 660 images from the validation dataset, equally distributed in term of roof types to evaluate the validation loss. 

In the end, we reported our evaluation in the results section on the complete validation dataset. 

 

Results 

 

As mentioned previously, we split the dataset into three non-overlapping parts for training, validation and test. For all 

the models we used only the training subset to train our neural networks and reported the accuracy (in percentage) on 

the validation subset as well as test subset. All three supervised neural networks performed well as compared to the 

Siamese approach, which showed very poor performance on this task. MobileNet was able to achieve the best 

performance of 77.21% on validation and 77.01 on the test dataset. It is very difficult to access the exact reason for 

poor performance of Siamese networks on this task as many recent works (Kihyuk Sohn, 2016, Roy et al, 2019) have 

demonstrated that training of Siamese networks possess additional challenges other than neural network architecture 

design and sampling of data plays a crucial role in this process. Metric learning based techniques like Siamese 

networks are active and rapidly developing areas of machine learning research but this experiment clearly 

demonstrates the challenges with this technique. It is also evident that use of classification networks with large amount 

of synthetically generated data is a much suitable alternative, when sufficient training data is not available. Table 1 

shows a quantitative comparison of the 4 discussed techniques on validation and test datasets. 

 

Table 1.  Quantitative comparison of the discussed techniques on Validation and Test datasets 

 

Technique Validation Accuracy (%) Test Accuracy (%) 

ResNet50 71.44 69.02 

DenseNet121 65.79 57.19 

MobileNet 77.21 77.01 

Siamese Network 9.09 9.09 

 

Figure 4. This diagram illustrates a simplified version of the Siamese neural network used in this paper. 

The number of Convolutional layers used in the network varies from 7 in the image to 13 for our custom 

Siamese network.    
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We also show a qualitative comparison of the three different 3D reconstruction of the same area of Hawaii using 

vectors extracted from AI pipeline, OSM data for Hawaii and NGA freely available data for Hawaii in Figure 5. The 

figure (a) clearly shows that the AI pipeline is able to extract significant amounts of information from the imagery in 

the form of Building footprints and its attributes such as roof type and roof color. Figure (b) shows the same area 

reconstructed using OSM data, which is the most common freely available data; due to limited coverage there are very 

few buildings in the figure. Figure (c) shows a 3D reconstruction of the same area using freely-available building 

footprint vectors from the office of planning, State of Hawai’i (NGA), In some cases the building boundaries are 

sharper as they are manually labeled, which requires significant manual effort. Also, NGA vector data did not include 

any attributes so the roof type and color were assigned randomly.  Table 2 summarizes the different attributes of the 

vector data used for the creation of 3 different 3D models. AI extraction refers to the vector data produced by our 

proposed pipeline whereas Open Street Map and NGA refers to vector data made available by the corresponding 

agencies.  

 

Table 2.  This table shows a comparison of the attributes of the vector data used for creation of the 3D models 

 

Vector source AI extraction Open Street Map NGA 

Footprint AI produced from imagery 

 

Manual – from crowd 

source 

Manual – from Gov 

agency 

Building type attribution Not extracted Manual – from crowd 

source 

Manual – from Gov 

agency 

Roof type attribute Extracted from imagery Not available Not available 

 

 

CONCLUSION 

 

In this paper we presented a multi-level Deep Learning-based AI pipeline for the extraction of attributed building 

footprints with attributes such as roof type and roof color for each extracted building. Using the extracted and derived 

attributes such as the area of the footprint, the building heights were estimated. This technique replaces the acquisition 

of expensive and difficult-to-procure high-resolution DSM data for the creation of geo-specific synthetic 

environments. We also demonstrated the use of synthetic data for training of Deep Learning models in the remote 

sensing domain to solve the problem of roof type classification where no labeled training dataset exists. A 

performance-based comparative analysis of multiple classification techniques on the synthetic data was also 

Figure 5. Shows 3D reconstruction of the same area in Hawaii using 3 different techniques. (a) Attributed 

building footprints extracted using the AI pipeline. (b) OSM data from Hawaii and (c) NGA freely available 

vector data for Hawaii.  
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performed to provide insights on how synthetic/hybrid datasets can be used when labeled training datasets are not 

available. 

 

Furthermore, we have shown qualitative results from the AI pipeline in the form of 3D reconstruction of an area of 

interest on the island of Hawaii. Visual comparison of the different 3D models demonstrates the advantage of using 

AI (computer vision) for extraction of attributed features from imagery for the purpose of 3D scene reconstruction. In 

the future we would like to extend our work to improve accuracy of roof type classification as well as building footprint 

extraction, especially in cases of partially observable buildings (e.g. when part of a building is hidden by trees).We 

would also like to extend the AI-based approach for extraction of other attributed feature classes such as urban 

vegetation and roads. 
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